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(57) ABSTRACT

Certain example embodiments of the present disclosure can
provide a parallelized atomic increment. A vgather instruc-
tion returns to a plurality of processing elements the value of
a memory location. A vgather_hit instruction returns to a
function of the number of “hits” to the memory location. In
one embodiment, the function is unity. In another embodi-
ment, the function is the number of hits having an ordinal
designation less than or equal to the processing element
receiving the return value.
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1
PARALLEL ATOMIC INCREMENT

TECHNICAL FIELD

This specification relates to the field of parallel processing,
and more particularly to a microprocessor providing a paral-
lel atomic increment capability.

BACKGROUND

Parallel processing, for example that is implemented by a
digital signal processor (DSP) to optimize digital signal pro-
cessing algorithms, tends to be intensive in memory access
operations. For example, a DSP can operate as a single
instruction, multiple data (SIMD), or data parallel, processor.
In SIMD operations, a single instruction is sent to a number of
processing elements of the digital signal processor, where
each processing element can perform a same operation on
different data. To achieve high-data throughput, memory
organization of DSPs having SIMD architectures (or other
processor supporting parallel processing) support multiple,
synchronous data accesses. In an example, a processor archi-
tecture may include a multi-banked memory interconnected
by a memory interconnect network architecture to the pro-
cessing elements, such that more than one data operand can
be loaded for (accessed by) the processing elements during a
given cycle.

The memory interconnect network architecture typically
includes an interconnection network for every respective par-
allel data transfer. For example, if two parallel data transfers
from the memory to the processing elements are needed to
perform an operation, the memory interconnect network
architecture implements an interconnection network for
transferring a first data set from the memory to the processing
elements and another interconnection network for transfer-
ring a second data set from the memory to the processing
elements.

BRIEF DESCRIPTION OF DRAWINGS

The present disclosure is best understood from the follow-
ing detailed description when read with the accompanying
figures. It is emphasized that, in accordance with the standard
practice in the industry, various features are not drawn to scale
and are used for illustration purposes only.

FIG. 1 is a block diagram of a digital signal processor
configured to provide a parallel atomic increment instruction.

FIG. 2 is a block diagram of a processing element for a
digital signal processor.

FIG. 3 is a block diagram illustrating a first state of a
microprocessor executing a parallel atomic increment
instruction.

FIG. 4 is a block diagram illustrating another state of a
microprocessor executing a parallel atomic increment
instruction.

FIG. 5 is a block diagram illustrating yet another state of a
microprocessor executing a parallel atomic increment
instruction.

FIG. 6 is a block diagram illustrating yet another state of a
microprocessor executing a parallel atomic increment
instruction.

FIG. 7 is a block diagram illustrating yet another state of a
microprocessor executing a parallel atomic increment
instruction.

FIG. 8 is a block diagram illustrating yet another state of a
microprocessor executing a parallel atomic increment
instruction.
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FIG. 9 is a block diagram illustrating yet another state of a
microprocessor executing a parallel atomic increment
instruction.

FIG. 10 is a block diagram of partial logic for providing a
parallel atomic increment instruction.

OVERVIEW OF EXAMPLE EMBODIMENTS

In one example embodiment, there is disclosed computer-
executable method comprising: receiving a plurality of simul-
taneous read requests for a memory location; returning the
value of the memory location and the value of a function of
the number of simultaneous read requests; computing a sum
of the value of the memory location and the number of read
requests; and writing the sum back to the memory location.

In another example embodiment, there is disclosed a
microprocessor comprising a plurality of processing ele-
ments configured to simultaneously access a memory loca-
tion, wherein the microprocessor is configured, upon receiv-
ing a plurality of read requests for the memory location, to
return to at least one of the processing elements a value
contained in the memory location and a value of a function of
the number of processing elements that accessed the memory
location.

In yet another exemplary embodiment, there is disclosed a
microprocessor providing a vector hit instruction, the vector
hit instruction configured to receive within a first time divi-
sion and from a plurality of processing elements a plurality of
read requests directed to a memory location; and on a second
time division return to at least one of the processing elements
avaluethatis a function of the number of processing elements
that provided read requests for the memory location during
the first time division.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

The following disclosure provides many different embodi-
ments, or examples, for implementing different features of
the present disclosure. Specific examples of components and
arrangements are described below to simplify the present
disclosure. These are, of course, merely examples and are not
intended to be limiting. Further, the present disclosure may
repeat reference numerals and/or letters in the various
examples. This repetition is for the purpose of simplicity and
clarity and does not in itself dictate a relationship between the
various embodiments and/or configurations discussed.

Atomic increment is an operation often provided by certain
classes of parallelized microprocessors such as graphics pro-
cessing units (GPUs) and digital signal processors (DSPs),
and is provided as a native method in the programming lan-
guage OpenCL. Atomic increment guarantees that if multiple
threads perform the same operation on a memory location, the
result is consistent. For example, assuming that two threads
called “process A” and “process B” are both operating on a
data set to create a histogram, both may find a “hit” for a
certain value and access the memory location where the count
for that value is stored, for example hexadecimal location
0x100. Assuming that location 0x100 contains the value “0,”
process A may read the value 0 from 0x100 and load it into a
register. On the next clock cycle, process A increments the
value to “1,” but process B may also read a “0” from 0x100
while process A is incrementing. Process A then writes “1” to
0x100, and finally process B writes “1” to 0x00.

The result is incorrect. Because two threads each found a
hit for the value, the correct incremented value should be “2.”
So an atomic increment operation is provided to guarantee
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that if two threads access the memory location, the correct
value of “2” will be written. A generalized prototype of the
atomic increment function may be of the form:

int atomic_inc(int*p)

Atomic increment accepts a pointer to a memory location,
locks the location pointed to, increments the value pointed to,
and returns the old value pointed to. Thus, in the previous
example, both threads may call:

old=atomic_inc(0x100);

When process A calls atomic_inc, a lock is placed on
memory location 0x100. When process B tries to read loca-
tion 0x100 while the lock is in place, it will be required to wait
until process A has finished the increment operation. Process
A increments the value to “1,” and receives “0” (the old value)
as a return. Process B is then permitted to access the memory
location, increments the value to “2,” and receives “1” as a
return value.

An atomic operation relying on lock states will inherently
cause otherwise parallel processes to linearize. For example,
process A and process B may be operating on separate chunks
of a single data set. Both may simultaneously locate a hit for
a particular value and want to update the histogram entry for
that value. But because process A places a lock on the
memory location, process B will be forced to wait as though
the increment were a serial operation.

A parallelized version of an atomic increment operation,
however, permits both process A and process B to correctly
increment the memory location in parallel. For example, a
single-instruction multiple-data (SIMD) microprocessor may
provide a plurality of processing elements (PEs), each work-
ing on separate chunks from a data set to form a histogram. If
three PEs locate an identical value at substantially the same
time, each will simultaneously issue a read request to 0x100
via a special “vgather” instruction. In response to the vgather
instruction, each PE receives the old value in a first register
and the number of PEs that accessed the memory location in
a second register. Those with skill in the art will also recog-
nize that this method can be trivially altered by returning a
simple, reversible function of either value, for example, offset
by a constant or a multiplier. For purposes of this specifica-
tion, any trivial reversible function of a return value is treated
as the exact equivalent of the return value itself.

Thus, after executing the “vgather” instruction, each PE
knows the old value and knows that three PEs accessed the
value. Instead of incrementing the old value by one, each PE
instead increments the value by three. The PEs then each issue
a write request to the memory location, and the correct value
is stored.

A more generalized version of this instruction may also or
alternatively be provided, and is more useful for certain com-
pression operations. In that case, PEs are prioritized by an
ordinal designation. For example, if a microprocessor con-
tains eight PEs, they will be numbered 0-7. In this version of
the “vgather” instruction, each processor receives a function
of'the number of PEs that issued a read request, specifically in
this exemplary embodiment, the number of PEs with a des-
ignation less than or equal to the PE issuing the request. So for
example, PEs 0, 1, and 3 may each issue a vgather instruction
for location 0x100 on the same clock cycle. Each receives “0”
as the old value of 0x100. PEO receives “1” as the return value
for the number of PEs because it is the only PE with its
designation or lower that issued a read request to 0x100. PE1
receives “2” as the return value for the number of PEs because
PE1 and PEO have a designation less than or equal to PE1. PE
3 receives “3” as the return value for the number of PEs
because PE3, PE1, and PEO all have a designation less than or
equal to PE3.
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On the next clock cycle, PE3, PE1, and PEOQ all attempt to
write a value back to 0x100, creating a race condition. The
microprocessor provides rules to arbitrate which value is
permitted to write. For example, in this embodiment, the PE
with the highest designation may be permitted to write back,
in this case PE3, which has correctly incremented the count
by 3. So after this clock cycle, PE3 has the value “3,” which is
written back to 0x100. That location now correctly reflects
that three new occurrences have been located.

Additional details of an exemplary embodiment are best
understood with reference to the attached figures. It should be
understood, however, that the attached figures provide only
one or more exemplary embodiments, and that those with
skill in the art will appreciate and recognize many suitable
variations on the disclosed embodiments are possible, and it
is not intended for the claims to be limited to the specific
embodiments disclosed.

FIG. 1 is a block diagram of an exemplary embodiment of
a digital signal processor (DSP) 100. DSP 100 includes a
processing core 110, which includes a plurality of processing
elements 112. Each processing element is indexed with an
ordinal designation, in this case from O to 7, so that PE 112-1
is designated as PEO, PE 112-2 is designated as PE1, and so
onup to PE 112-8, which is designated as PE7. Although this
example discloses a DSP 100 with eight processing elements,
those with skill in the art will recognize that the number of
PEs is an ordinary design choice, and that for purposes of this
disclosure, DSP 100 may have any number of PEs that pro-
vide substantially parallel operation. PEs 112 may perform
numeric processing for digital signal processing algorithms,
and may operate independently, in parallel, or as a SIMD
engine. PEs 112 may be vector processors, as in this exem-
plary embodiment, or may be any combination of scalar and
vector processors.

Those with skill in the art will also recognize that although
DSP 100 is disclosed as a “digital signal processor,” this is
only one example of many different types of microprocessors
that could be adapted for use with the present disclosure. For
example, DSP 100 may, in other examples be a central pro-
cessing unit, microcontroller, graphics processing unit, field-
programmable gate array or application-specific integrated
circuit by way of non-limiting example.

DSP 100 is communicatively coupled to a memory 120 via
a data bus 170. Memory 120 may be for example a random-
access memory or non-volatile memory. Memory 120 is a
logical designation, and those with skill in the art will recog-
nize that memory 120 may be divided into one or more layers
of on-core cache, main memory, paging, and non-volatile
memory. In some embodiments where processing speed is
critical, memory 120 may be a high-speed, low-latency
memory technology.

A control unit 150 is communicatively coupled to process-
ing core 110 and may decode and provide software instruc-
tions 152. In some embodiments, instructions 152 comprise a
signal that selectively activates a circuit on a PE 112. One
exemplary SIMD method includes providing a single instruc-
tion to a plurality of PEs 112, with each PE operating on
separate memory locations. This should not be confused,
however, with operating on separate histogram arrays. For
example, given a four-tone image, eight separate PEs 112
may operate on eight separate regions of the image, each
looking for occurrences of the four tones. Each PE 112
updates a single histogram array with four positions. The
histogram is applicable to the entire image, so all eight PEs
112 should be able to access and update the histogram.

A clock 130 regulates timing for DSP 100. Clock 130 may
control not only execution of instructions 152, but also access
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times to memory 120. A “clock cycle” is generally used to
refer to a time encompassing a single cycle of a regular,
alternating low-high cycle of clock 130. In some cases, PEs
112 are configured to execute a single instruction 152 during
each clock cycle. But those having skill in the art will recog-
nize that some instructions will take multiple clock cycles to
execute, and that execution of a list of instructions can more
generally be divided into a series of time divisions, and that
each time division need not necessarily be equal in time to
every or any other time division.

Because a plurality of PEs 112 may attempt to read from or
write to the same memory location in a single time division,
control unit 150 may need to arbitrate between PEs 112. For
example, if PEs 112-1, 112-4, and 112-8 each try to write to
the same memory location during a single time division,
control unit 150 may permit only one value to be written out
to memory 120 and discard the others. For example, control
unit 150 may accept the value from the highest-numbered PE,
in this case PE7 112-8. Other algorithms for arbitrating
between multiple write requests are known in the art. In
contrast, multiple read requests do not necessarily cause a
data collision. In the case of multiple read requests, control
unit 150 may merely fetch the requested value from memory
120 and provide it to each PE 112 that requested the value. It
is inherent to these operations that control unit 150 knows the
identity of each PE 112 attempting to access memory 120,
and knows in aggregate how many PEs 112 have attempted to
access the same memory location in a single time division.

Finally, processing core 110 may communicatively couple
to one or more peripheral drivers 140, which enables process-
ing core 110 to communicate with other system elements
such as communication networks or human interfaces by way
of non-limiting example.

FIG. 2 is a block diagram of an exemplary embodiment of
a processing element 112. PE 112 receives clock 130 and
instructions 152 as described in FIG. 1. PE 112 also commu-
nicatively couples with bus 170, which enables PE 112 to
request read or write access to a memory location. Although
this exemplary embodiment shows a direct connection to bus
170, those with skill in the art will recognize that in some
cases, control unit 150 (FIG. 1) or other selection circuitry
may intercede between a single PE 112 and memory 120.

PE 112 includes a logic unit 210, which may include cir-
cuitry for carrying out one or more instructions. When an
instruction 152 is provided to logic unit 210, instruction 152
may include data for selecting which instruction circuit to
execute. Instructions may rely on one or more registers 220,
which store temporary values for immediate access by logic
unit 210. In general, a register 220 may be supplied with a
value from memory 120 (FIG. 1) or by logic unit 210. When
register values are retrieved from memory 120 (FIG. 1), data
buffer 230 may be used to temporarily buffer values until a
read or write request is complete.

FIG. 3 is ablock diagram illustrating an exemplary method
of implementing a parallel atomic increment. In the exem-
plary embodiment, a plurality of PEs 112 contain index val-
ues. For example, the exemplary method may be concerned
with creating a histogram of a four-tone picture. In this case,
a histogram of the four tones is stored in array 310, which is
contained in memory 120 (FIG. 1). Array 310 includes four
memory locations indexed 0 through 3, representing the four
tones. At time t=0, some pixel processing has already
occurred, so array[0] contains the hexadecimal value 0x12,
meaning that before t=0, 0x12 pixels with that value were
found. Similarly, array[1] contains 0x3A, array[2] contains
0x0B, and array[4] contains 0x85. Also previous to t=0, DSP
100 (FIG. 1) scanned eight more pixels of the image, finding
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that three were of intensity O (these values were received by
PE0112-1,PE2 112-3, and PE3 112-4). Two were of intensity
1 (PE1 112-2 and PE4 112-5), two were of intensity 2 (PES
112-6 and PE6 112-7), and one was of intensity 3 (PE7
112-8). Each PE 112 holds its index value 320 in an index
register I. At t=0, each PE 112 issues an instruction such as the
exemplary “vgather” instruction, which issues a read request
to memory 120 (FIG. 1), asking for the value of array[I].

Turning to FIG. 4, a t=1, each PE 112 receives a return
value from the vgather instruction. Each PE 112 includes two
general-purpose registers RO 410 and R1 420. Each PE 112
receives in R0 410 the old value of array[I], and receives inR 1
a value of a function of the number of PEs 112 that accessed
array[1] during t=0. In this exemplary embodiment, the func-
tion is unity, so each PE 112 receives the value of the total
number of PEs 112 that accessed array[I]. PEO 112-1, PE2
112-3, and PE3 112-4 each receive 0x12 into R0 410 and 0x3
into R1 420. PE1 112-2 and PE4 112-5 both receive the value
0x3A into RO 410 and 0x2 into R1 420. PE5 112-6 and PE6
112-7 both receive the value 0x0B into RO 410 and the value
0x2 into R1 420. PE7 112-8 receives the value 0x85 into RO
410 and 0x1 into R1 420.

Thus, at time t=1, each PE 112 knows the old value of
array[l], representing the number of pixels of that intensity
previously encountered, and the number of PEs 112 that
issued a read request to array[I], representing the number of
pixels of that intensity encountered in this pass. At time t=2,
to update the histogram, each PE 112 executes the SIMD
instruction RO=R0+R1, as seen in FIG. 5. Each PE 112 now
holds in RO 410 an accurate “hit” count for pixels of intensity
“1.” Each PE 112 also still holds in index register 320 the
index for the memory location containing the count of pixels
of intensity “I.”

InFIG. 6, at time t-3 each PE 112 issues a write request to
write back to array[I] the value it holds in RO, which is the
updated hit count for the histogram. Because more than one
PE 112 may be attempting to write to array|], controller 150
may provide arbitration. For example, the PE 112 with the
highest designation may be granted write access, so that in
this case, PE3 112-4, PE4 112-5, PE6 112-7, and PE7 112-8
will each be granted write access to their respective memory
locations.

FIG. 7 is a block diagram illustrating a second exemplary
embodiment in which a “vgather_hit” instruction is provided.
In this case, FIG. 7 shows a plurality of read requests from a
plurality of PEs 112 to array 310 at time t=0. As in FIG. 3,
each PE 112 includes an index register 320. For simplicity of
illustration, each PE 112 of FIG. 7 and each location in array
310 contain identical data to those shown in FIG. 3.

InFIG. 8, at time t=1, rather than returning the total number
of PEs 112 that issued a read request, vgather_hit returns a
function of the number of PEs 112 that issued a read request
to that memory location. Specifically, each PE receives in
register RO a count of PEs with a designation less than or
equal to that of the PE. Thus, PEO, PE2, and PE3 each receive
“0x0” into R1. PEO receives “0x1” into RO, PE2 receives
“0x2” into RO, and PE3 receives “0x3” into RO. Similarly,
PE1 and PE4 both receive “Ox1” into R1. PE1 receives “Ox1”
into RO and PE4 receives “0x2” into RO. PES and PE6 both
receive “0x2” into R1. PES5 receives “Ox1” into RO and PE6
receives “0x2” into RO. PE7 receives “0x3” into R1 and “0x1”
into RO. Notably, while this embodiment of vgather_hit also
returns the old value of the memory location into RO, this
behavior is not necessary. In some applications, the only
value of interest is the function of the hit count provided in R1
in this embodiment, and so that may be the only value pro-
vided.
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In FIG. 9, each PE 112 performs the vector sum operation
RO=RO+R1, after which PEQ contains “0x13” in RO, PE1
contains “0x3B,” PE2 contains “0x14,” PE3 contains “0x15,”
PE4 contains “0x3C,” PES contains “0x0C,” PE6 contains
“0x0D,” and PE7 contains “0x86.”

Att=3, Each PE 112 then attempts to write back its value to
the location pointed to by its index register 320. In this case,
PEO 112-1, PE2 112-3, and PE3 112-4 each try to write to
memory location 0. Controller 150 provides arbitration, for
example by accepting the write value from the PE 112 with
the highest ordinal designation, in this case PE3 112-4. Thus,
array|0] receives 0x15. Those with skill in the art, however,
will recognize that other arbitration methods are available,
and may be used as appropriate.

Similarly, PE1 and PE4 both attempt to write to array[1],
and PE4 wins, so that array[1] receives 0x3C. PE5S and PE6
both attempt to write to array[2], and PE 6 wins, so that
array|2] receives 0xOB. PE7 is the only PE 112 that writes to
array[3], so no arbitration is necessary in that case.

FIG. 10 is a block diagram of a cascaded logic circuit
disclosing an exemplary hardware implementation of the
logic of the embodiment disclosed in FIGS. 7-9. The circuitis
divided into a plurality of “levels,” with each level handling
logic for progressively higher-numbered PEs 112. Each PE
112 has associated with it an address 1010, which is the
address of the memory location being read. For each PE 112
higher than PEQ, a logic block 1060 is provided with a com-
parator 1030, an AND gate 1040, and an adder 1050. Logic
block 1060 compares the index register of the PE being tested
to the index register of a PE with a lower ordinal designation.
If the index registers match and if the PE is enabled, the hit
count is incremented by one, the adder is incremented by one.
PEO s a special case, because its count will always be exactly
1. Because each additional logic level includes one more logic
block 1060 than the previous level, each logic block may have
up to one “hit” more than the previous level.

Also disclosed in FIG. 10 is an “enable” operator 1020.
Enable operator 1020 may be used to optionally select or
de-select certain PEs 112 for inclusion in the “hit count.”” For
example, any PE 112 with its enable operator set to “1” or
“enabled” is included, while any PE 112 with its enable
operator set to “0” or “disabled” is excluded from the count.
Thus, for example, if enable operator 1020 for PEO-PE1, and
PE3-PE7 are set to “1,” while enable operator 1020 for PE2 is
set to “0,” PE2 will be ignored for purposes of the vector
instructions provided herein.

The variation of the atomic increment operation disclosed
in FIGS. 7-10is useful in methods such as compressing arrays
into lists. For example, in the Canny edge-detection filter, the
only pixels that are interesting are ones that have a gradient
magnitude above a threshold. All others are ignored. Thus,
given a data set:

0100-1203

A Canny filter may be tasked with finding the offsets of all
pixels that have a non-zero value. A parallelized operation can
be implemented, for example:

for(i=j=0; i<N; i++)
if(pixel[i])
list[atomic__inc(&;j)] = i;

The loop can beunrolled and executed for example on eight
PEs, with each PE examining one pixel. The resulting list of
non-zero pixels may be in the form:
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In this case, the atomic increment disclosed in FIGS. 3-6
would be unsuitable because each PE would try to write its
location back to the same position in the array “list[ ].” The
embodiment of FIGS. 7-10 will work, however, because each
PE will now receive a unique address.

With a serialized atomic increment instruction, this loop
would be executed over eight sequential time divisions. But
with a parallelized atomic increment, the entire loop can be
executed in a single time division on eight PEs. The foregoing
code can be further illustrated in the form of assembly instruc-
tions for an exemplary vector processor architecture.

vload pixel, p += NPE | | # get pixels
vadd i, i, NPE # get i in each PE
pred0 = pixel 1=0 # set pred

vbroadcast jval, j ?predO | |
vgather_ hit, inc, j ?pred0
vadd jval, jval, inc ?pred0  # incr index

vsub idx, jval, 1 ?pred0  # subtract 1 to get index
vscatter I, list, idx ?pred0 | | # write to list
vscatter jval, j, zero ?pred0 # update j

# get j value in every enabled PE
# how many are enabled

An exemplary histogram method is also provided. For
example, a histogram may be coded in OpenCL as follows:

for (i=0; i<N; i++)
atomic__inc (histogram + offset[i]);

The same method may be implemented in assembly
instructions, with a similar vgather_hit instruction provided.
Note that in this example, “vgather” and “vgather_hit” are
provided as separate operations. In other embodiments, a
single “vgather” instruction may return into designated reg-
isters both the value read and the hit count, as illustrated in
FIGS. 3-9.

vload offset, p += NPE  # get address offsets

vgather h, histogram, offset | | # read current values
vgather_ hit, histogram, offset # how many hit each addr
vadd h, h, hit # incr value

vscatter h, histogram, offset # save in table

The particular embodiments of the present disclosure may
readily include a system on chip (SOC) central processing
unit (CPU) package. An SOC represents an integrated circuit
(IC) that integrates components of a computer or other elec-
tronic system into a single chip. [t may contain digital, analog,
mixed-signal, and radio frequency functions: all of which
may be provided on a single chip substrate. Other embodi-
ments may include a multi-chip-module (MCM), with a plu-
rality of chips located within a single electronic package and
configured to interact closely with each other through the
electronic package. In various other embodiments, the digital
signal processing functionalities may be implemented in one
or more silicon cores in Application Specific Integrated Cir-
cuits (ASICs), Field Programmable Gate Arrays (FPGAs),
and other semiconductor chips.

In example implementations, at least some portions of the
processing activities outlined herein may also be imple-
mented in software. In some embodiments, one or more of
these features may be implemented in hardware provided
external to the elements of the disclosed figures, or consoli-
dated in any appropriate manner to achieve the intended func-
tionality. The various components may include software (or
reciprocating software) that can coordinate in order to
achieve the operations as outlined herein. In still other
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embodiments, these elements may include any suitable algo-
rithms, hardware, software, components, modules, inter-
faces, or objects that facilitate the operations thereof.

Additionally, some of the components associated with the
described microprocessors may be removed, or otherwise
consolidated. In a general sense, the arrangements depicted in
the figures may be more logical in their representations,
whereas a physical architecture may include various permu-
tations, combinations, and/or hybrids of these elements. It is
imperative to note that countless possible design configura-
tions can be used to achieve the operational objectives out-
lined herein. Accordingly, the associated infrastructure has a
myriad of substitute arrangements, design choices, device
possibilities, hardware configurations, software implementa-
tions, equipment options, etc.

Any suitably-configured processor component can execute
any type of instructions associated with the data to achieve the
operations detailed herein. DSP 100 (FIG. 1) could transform
an element or an article (for example, data) from one state or
thing to another state or thing. In another example, some
activities outlined herein may be implemented with fixed
logic or programmable logic (for example, software and/or
computer instructions executed by a processor) and the ele-
ments identified herein could be some type of a program-
mable processor, programmable digital logic (for example, a
field programmable gate array (FPGA), an erasable program-
mable read only memory (EPROM), an electrically erasable
programmable read only memory (EEPROM)), an ASIC that
includes digital logic, software, code, electronic instructions,
flash memory, optical disks, CD-ROMs, DVD ROMs, mag-
netic or optical cards, other types of machine-readable medi-
ums suitable for storing electronic instructions, or any suit-
able combination thereof. In operation, DSP 100 may store
information in any suitable type of non-transitory storage
medium (for example, random access memory (RAM), read
only memory (ROM), field programmable gate array
(FPGA), erasable programmable read only memory
(EPROM), electrically erasable programmable ROM (EE-
PROM), etc.), software, hardware, or in any other suitable
component, device, element, or object where appropriate and
based on particular needs. Further, the information being
tracked, sent, received, or stored in DSP 100 could be pro-
vided in any database, register, table, cache, queue, control
list, or storage structure, based on particular needs and imple-
mentations, all of which could be referenced in any suitable
timeframe. Any of the memory items discussed herein should
be construed as being encompassed within the broad term
‘memory.” Similarly, any of the potential processing ele-
ments, modules, and machines described herein should be
construed as being encompassed within the broad term
‘microprocessor.’

Computer program logic implementing all or part of the
functionality described herein is embodied in various forms,
including, but in no way limited to, a source code form, a
computer executable form, and various intermediate forms
(for example, forms generated by an assembler, compiler,
linker, or locator). In an example, source code includes a
series of computer program instructions implemented in vari-
ous programming languages, such as an object code, an
assembly language, or a high-level language such as
OpenCL, Fortran, C, C++, JAVA, or HTML for use with
various operating systems or operating environments. The
source code may define and use various data structures and
communication messages. The source code may be in a com-
puter executable form (e.g., via an interpreter), or the source
code may be converted (e.g., via a translator, assembler, or
compiler) into a computer executable form.
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The foregoing outlines features of several embodiments so
that those skilled in the art may better understand the aspects
of the present disclosure. Those skilled in the art should
appreciate that they may readily use the present disclosure as
a basis for designing or modifying other processes and struc-
tures for carrying out the same purposes and/or achieving the
same advantages of the embodiments introduced herein.
Those skilled in the art should also realize that such equiva-
lent constructions do not depart from the spirit and scope of
the present disclosure, and that they may make various
changes, substitutions, and alterations herein without depart-
ing from the spirit and scope of the present disclosure.

Numerous other changes, substitutions, variations, alter-
ations, and modifications may be ascertained to one skilled in
the art and it is intended that the present disclosure encompass
all such changes, substitutions, variations, alterations, and
modifications as falling within the scope of the appended
claims. In order to assist the United States Patent and Trade-
mark Office (USPTO) and, additionally, any readers of any
patent issued on this application in interpreting the claims
appended hereto, Applicant wishes to note that the Applicant:
(a) does not intend any of the appended claims to invoke
paragraph six (6) of 35 U.S.C. section 112 as it exists on the
date of the filing hereof unless the words “means for” or
“steps for” are specifically used in the particular claims; and
(b) does not intend, by any statement in the specification, to
limit this disclosure in any way that is not otherwise reflected
in the appended claims.

What is claimed is:

1. A computer-executable method comprising:

receiving a plurality of simultaneous read requests for a

memory location;

returning a value of the memory location and a value of a

function of the number of simultaneous read requests;
computing a sum of the value of the memory location and
the number of read requests; and

writing the sum back to the memory location.

2. The method of claim 1, wherein the plurality of simul-
taneous read requests are provided by a plurality of process-
ing elements, each having an ordinal designation, and,
wherein the returning comprises returning to each processing
element the value of the memory location and the number of
read requests by processing elements having an ordinal des-
ignation less than or equal to that of the processing element.

3. The method of claim 2, wherein the writing comprises
each processing element attempting to write the sum back to
the memory location and accepting the sum from the process-
ing element with the highest ordinal designation.

4. The method of claim 1, wherein the plurality of simul-
taneous read requests are provided by a plurality of process-
ing elements, and, wherein the returning comprises returning
to each processing element the value of the memory location
and the total number of read requests.

5. The method of claim 1, wherein computing a sum further
comprises checking the status of an enable operator for each
read request and including aread request in the sum only ifthe
enable operator is in an enabled state.

6. A microprocessor comprising:

a plurality of processing elements configured to simulta-

neously access a memory location;

wherein the microprocessor is configured, upon receiving a

plurality of read requests for the memory location, to
return to at least one of the processing elements a value
contained in the memory location and a value of a func-
tion of the number of processing elements that accessed
the memory location.
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7. The microprocessor of claim 6, wherein the micropro-
cessor is further configured to return to each processing ele-
ment providing a read request the value contained in the
memory location.

8. The microprocessor of claim 7, wherein:

each processing element is assigned an ordinal designa-

tion; and

the function is, for a given processing element, the number

of read requests by processing elements with an ordinal
designation less than or equal to that of the processing
element.

9. The microprocessor of claim 8, wherein the micropro-
cessor is configured to provide the value of the function to
each processing element providing a read request to the
memory location.

10. The microprocessor of claim 9, wherein the micropro-
cessor is further configured to receive a plurality of write
requests from a plurality of processing elements to the
memory location.

11. The microprocessor of claim 10, wherein the micro-
processor is further configured to accept only the write
request from the processing element having the highest ordi-
nal designation.

12. The microprocessor of claim 6, wherein the micropro-
cessor is further configured to return to each processing ele-
ment that accesses the memory location the value of the
function.

13. The microprocessor of claim 6, wherein the processor
is further configured to return to each processing element that
accesses the memory location the value contained in the
memory location and the value of the function.

14. The microprocessor of claim 13, wherein the function
is unity.

15. The microprocessor of claim 6, wherein the function is
unity.

16. The microprocessor of claim 6, wherein each process-
ing element has an associated enable operator, and, wherein
the microprocessor is further configured to consider a pro-
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cessing element as having accessed the memory location only
if the processing element’s enable operator is in an enabled
state.

17. A microprocessor providing a vector hit instruction, the
vector hit instruction configured to:

receive within a first time division and from a plurality of

processing elements a plurality of read requests directed
to a memory location; and

on a second time division return to at least one of the

processing elements a value that is a function of the
number of processing elements that provided read
requests for the memory location during the first time
division.

18. The microprocessor of claim 17, wherein the vector hit
instruction further provides to the at least one processing
element a value of the memory location.

19. The microprocessor of claim 18 further providing a
vector write instruction configured to:

receive during a third time division and from the plurality

of processing elements a plurality of write requests
directed to the memory location; and

selectively accept one of the write requests to write to the

memory location.

20. The microprocessor of claim 19, wherein the micro-
processor selectively accepts one of the write requests based
on ordinal designations assigned to each processing element.

21. The microprocessor of claim 17, wherein the function
is unity.

22. The microprocessor of claim 17, wherein each process-
ing element is assigned an ordinal designation and, wherein
the function is, for each processing element, the number of
processing elements providing read requests with an ordinal
designation less than or equal to that of the processing ele-
ment.

23. The microprocessor of claim 17, wherein each process-
ing element has an associated enable operator and, wherein
the vector hit instruction is further configured to consider a
processing element as having provided a read request only if
the processing element’s enable operator is enabled.

#* #* #* #* #*



